Monday, August 27, 2007

Applied Physics Letters 89, 202101 (2006)

InGaAs quantum dot molecules around self-assembled GaAs nanomound templates

J. H. Lee, Zh. M. Wang, N. W. Strom, Yu. I. Mazur, and G. J. Salamo
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701

Several distinctive self-assembled InGaAs quantum dot molecules (QDMs) are studied. The QDMs self-assemble around nanoscale-sized GaAs moundlike templates fabricated by droplet homoepitaxy. Depending on the specific InAs monolayer coverage, the number of QDs per GaAs mound ranges from two to six (bi-QDMs to hexa-QDMs). The Ga contribution from the mounds is analyzed in determining the morphologies of the QDMs, with respect to the InAs coverages ranging between 0.8 and 2.4 ML. Optical characterization shows that the resulting nanostructures are high-quality nanocrystals.

Featured on the Journal Cover of Applied Physics Letter, Volume 89, Issue 20, 2006.

Further reading on Quantum-Dot Molecules:
Self-Organization of InAs Quantum-Dot Clusters Directed by Droplet Homoepitaxy
Zhiming M. Wang, Baolai Liang, Kimberly A. Sablon, Jihoon Lee, Yuriy I. Mazur, Neil W. Strom, and Gregory J. Salamo
Small 3, 235 (2007)
Self-organization of quantum-dot pairs by high-temperature droplet epitaxy
Zhiming M. Wang, Kyland Holmes, Yuriy I. Mazur, Kimberly A. Ramsey, and Gregory J. Salamo
Nanoscale Research Letters 1, 57 (2006)
Zero-strain GaAs quantum dot molecules as investigated by x-ray diffuse scattering
M. Hanks, M. Schmidbauer, D. Grigoriev, P. Schafer, R. Kohler, T. H. Metzger, Zh. M. Wang, Yu. I. Mazur, and G. J. Salamo
Applied Physics Letters 89, 053116 (2006)

Sunday, August 26, 2007

Applied Physics Letters 84, 1931 (2004)

Fabrication of (In,Ga)As quantum-dot chains on GaAs(100)

Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701

Nanostructure evolution during the growth of multilayers of In0.5Ga0.5As/GaAs (100) by molecular-beam epitaxy is investigated to control the formation of lines of quantum dots called quantum-dot chains. It is found that the dot chains can be substantially increased in length by the introduction of growth interruptions during the initial stages of growth of the GaAs spacer layer. Quantum-dot chains that are longer than 5 µm are obtained by adjusting the In0.5Ga0.5As coverage and growth interruptions. The growth procedure is also used to create a template to form InAs dots into chains with a predictable dot density. The resulting dot chains offer the possibility to engineer carrier interaction among dots for novel physical phenomena and potential devices.

"A string of dots", Editors' Choice: Highlight of the Recent Literature
Science 303, 1947 (2004)

Further reading on Quantum Dot Chains:
Initial stages of chain formation in a single layer of (In,Ga)As quantum dots grown on GaAs (100)
M. Schmidbauer, Zh. M. Wang, Yu. I. Mazur, P. M. Lytvyn, G. J. Salamo, D. Grigoriev, P. Schäfer, R. Köhler, and M. Hanke
Applied Physics Letters 91, 093110 (2007)
Featured on the Journal Cover of Volume 91, Issue 9
One-dimensional postwetting layer in InGaAs/GaAs(100) quantum-dot chains
Zh. M. Wang, Yu. I. Mazur, J. L. Shultz, G. J. Salamo, and T. D. Mishima, and M. B. Johnson
Journal of Applied Physics 99, 033705 (2006);
Direct Spectroscopic Evidence for the Formation of One-Dimensional Wetting Wires During the Growth of InGaAs/GaAs Quantum Dot Chains
Xiaoyong Wang, Zhiming M. Wang, Baolai Liang, Gregory J. Salamo, and Chih-Kang Shih,
Nano Letters 6, 1847 (2006);
Controlling Planar and Vertical Ordering in Three-Dimensional (In,Ga)As Quantum Dot Lattices by GaAs Surface Orientation
M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, Zh. M. Wang, Yu. I. Mazur, P. Schafer, M. Hanke, R. Kohler, and G. J. Salamo
Physics Review Letters 96, 066108 (2006);
Photoluminescence linewidths from multiple layers of laterally self-ordered InGaAs quantum dots
Zh. M. Wang, Y. I. Mazur, Sh. Seydmohamadi, G. J. Salamo, and H. Kissel
Applied Physics Letters 87, 213105 (2005);
Control on self-organization of InGaAs/GaAs(100) quantum-dot chains
Zh. M. Wang, Yu. I. Mazur, K. Homles, G. J. Salamo,
Journal of Vacuum Science and Technology B 23, 1732 (2005);
Selective etching of InGaAs/GaAs(100) multilayers of quantum-dot chains
Zh. M. Wang, L. Zhang, K. Holmes, and G. J. Salamo
Applied Physics Letters 86, 143106 (2005);
High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures
Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo
Journal of Applied Physics 96, 6908 (2004);
Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes
Zh. M. Wang, Sh. Seydmohamadi, J. H. Lee, and G. J. Salamo
Applied Physics Letters 85, 5031 (2004);
Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy
D. G. Cooke, F. A. Hegmann, Yu. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson
Applied Physics Letters 85, 3839 (2004);
Persistence of (In,Ga)As quantum-dot chains under index deviation from GaAs(100)
Z.M.Wang, Yu. I. Mazur, G.J.Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh
Applied Physics Letters 84, 4681 (2004);
InGaAs/GaAs three-dimensionally-ordered array of quantum dots
Yu.I.Mazur, W.Q.Ma, X.Wang, Z.M.Wang, G.J.Salamo, M.Xiao, T.D.Mishima, and M.Johnson
Applied Physics Letters 83, 987 (2003).

Saturday, August 25, 2007

Applied Physics Letters 84, 1756 (2004)

Atom-resolved scanning tunneling microscopy of (In,Ga)As quantum wires on GaAs(311)A

H. Wen, Z. M. Wang, and G. J. Salamo
Physics Department, University of Arkansas, Fayetteville, Arkansas 72701

Generally (In,Ga)As strained growth on GaAs surfaces results in zero-dimensional quantum dots. The formation of one-dimensional quantum wires is demonstrated during (In,Ga)As molecular-beam-epitaxial growth on GaAs(311)A at high temperature. The wires are running along the [–233] direction. Atomically resolved scanning tunneling microscopy images reveal that the wires are triangular-shaped in cross section and the two side bonding facets are {11,5,2}. These results are discussed in terms of a mechanism of strain-driven facet formation.

Further reading on Quantum Wires:
Strong optical nonlinearity in strain-induced laterally ordered In0.4Ga0.6As quantum wires on GaAs (311)A substrate
Yu. I. Mazur, Zh. M. Wang, G. G. Tarasov, H. Wen, V. Strelchuk, D. Guzun, M. Xiao, G. J. Salamo, T. D. Mishima, Guoda D. Lian, and M. B. Johnson
Journal of Applied Physics 95, 053711 (2005)
Orientation dependence behavior of self-assembled (In,Ga)As quantum structures on GaAs surface
Sh. Seydmohamadi, Zh. M. Wang, G. J. Salamo
Journal of Crystal Growth 275, 410 (2005)
Surface dynamics during molecular-beam epitaxy of (In,Ga)As on GaAs(331)B: Formation of quantum wires with low In content
Zh. M. Wang, Sh. Seydmohamadi, V. R. Yazdanpanah, and G. J. Salamo
Physics Review B 71, 165315 (2005)
Self assembled (In,Ga)As quantum structures on GaAs(411)A
Sh. Seydmohamadi, Zh. M. Wang, G. J. Salamo
Journal of Crystal Growth 269, 257 (2004)
Polarization spectroscopy of InGaAs/GaAs quantum wires grown on (331)B GaAs template with nanoscale fluctuations
X.Y.Wang, Z.M.Wang, V.R.Yazdanpanah, G.J.Salamo, and M.Xiao
Journal of Applied Physics 95, 1609 (2004)
Highly anisotropic morphologies of GaAs(331) surfaces
V. R. Yazdanpanah, Z. M. Wang, and G. J. Salamo
Applied Physics Letters 82, 1766 (2003)

Friday, August 24, 2007

Applied Physics Letters 81, 2965 (2002)

GaAs(311) templates for molecular beam epitaxy growth: surface morphologies and reconstruction

Z. M. Wang, V. R. Yazdanpanah, J. L. Shultz, and G. J. Salamo
Physics Department, University of Arkansas, Fayetteville, Arizona 72701

Morphologies of GaAs(311) surfaces grown by molecular beam epitaxy were investigated by in situ reflection high-energy electron diffraction and scanning tunnelling microscope. In addition to the (8×1) reconstruction, two surface phases, GaAs(311)A-(4×1) and GaAs(311)B-(2×1) were observed. Both of these surfaces are characterized by wider, atomically smooth terraces with much lower structural anisotropy, when compared to the (8×1) reconstructed GaAs(311) surfaces. The observed surfaces have potential as templates for the growth of organized quantum dots, wires, and wells.

Further reading on High-Index Surfaces:
Morphological instability of GaAs (7 1 1)A: A transition between (1 0 0) and (5 1 1) terraces
V.R. Yazdanpanah, Zh.M. Wang, and G.J. Salamo
Journal of Crystal Growth 280, 2 (2005)
RHEED study of GaAs(3 3 1)B surface
V.R. Yazdanpanah, Zh.M. Wang, Sh. Seydmohamadi, and G.J. Salamo
Journal of Crystal Growth 277, 72 (2005)
Highly anisotropic morphologies of GaAs(331) surfaces
V. R. Yazdanpanah, Z. M. Wang, and G. J. Salamo
Applied Physics Letters 82, 1766 (2003)
Molecular-beam epitaxial growth and surface characterization of GaAs(311)B
Z.M.Wang, L.Daweritz, and K.H.Ploog
Applied Physics Letters 78, 712 (2001)

Curriculum Vitae

Zhiming M. Wang, Ph.D.
Research Professor
Institute of Nanoscale Science and Engineering
University of Arkansas
222 Physics Building
Fayetteville, Arkansas 72701, USA
Phone: 479-575-4217
Fax: 479-575-4580
E-mail: zmwang@uark.edu

Zhiming M. Wang received his B.S. degree in applied physics from Qingdao University, Qingdao, China, in 1992, his M.S. degree in physics from Beijing University in Beijing, China, in 1995, and his Ph.D. in condensed matter physics from the Institute of Semiconductors at the Chinese Academy of Sciences in Beijing, China, in 1998. From 1998 to 2000 he was a Postdoctoral Fellow at the Paul-Drude Institute in Berlin, Germany. In 2000, he joined the Center for Semiconductor Physics in Nanostructures (C-SPIN) at the University of Arkansas in Fayetteville, Arkansas, one of 29 elite Materials Research Science and Engineering Centers in the U.S. He has published about 100 publications in internationally refereed journals, including 30 in Applied Physics Letters, 13 in Journal of Applied Physics, 9 in Physics Review B, 5 in Nanotechnology, 1 in Physics Review Letters, 1 in Nano Letters, 1 in Small, and 1 in Advanced Functional Materials. His work has been highlighted as an Editors' Choice in Science (2004) and several times featured on the cover of Applied Physics Letters (2006, 2007). His current research interests include low-dimensional semiconductor nanostructures, ferroelectric and ferromagnetic nanostructures, and nanomaterial based biosensors.

Editorial Service:
Editor-in-Chief, Nanoscale Research Letters (Springer);
Book Series Editor, Lecture Notes in Nanoscale Science and Technology (Springer);
Guest Editor,
Journal of Electronic Materials,
Journal of Materials Science: Materials in Electronics,
Journal of Nanoscience and Nanotechnology.

Conference Organization Activities:
Conference Chair,
2007 Virtual Conference on Nanoscale Science and Technology,
2008 Villa Conference on Interaction Among Nanostructures;
Program Chair,
14th Semiconducting and Insulating Materials Conferences;
Symposium Organizer,
Materials Research Society (MRS) Fall Meeting (2006, 2007),
Minerals, Metals and Materials Society (TMS) Annual Meeting (2007, 2008).

Grant Reviewer:
Department of Energy

Journal Referee:
Applied Physics Letters;
Journal of Applied Physics;
Journal of Nanophotonics;
Journal of Physics: Condensed Matter;
Journal of Physics D: Applied Physics;
Journal of Vacuum Science and Technology;
Materials Letters;
Measurement Science and Technology;
Nano Today;
Nanotechnology;
Physics Letters A;
Superlattices and Microstructures.

Honors:
Guest Professor, Qingdao University, Shandong, China;
Profiled in the Marquis "Who's Who in Science and Engineering";
Profiled in the Marquis "Who's Who in the World".

Graduate Student Supervision (Research):
Kimberly Sablon, PhD Microelectronics-Photonics, University of Arkansas, December 2008;
JiHoon Lee, PhD Microelectronics-Photonics, University of Arkansas, August 2008;
Baolai Liang, PhD Microelectronics-Photonics, University of Arkansas, August 2006;
Hong Wen, PhD Microelectronics-Photonics, University of Arkansas, August 2005;
Shahram Seyedmohammadi, PhD Physics, University of Arkansas, August 2005;
Seong Oh Cho, MS Microelectronics-Photonics, University of Arkansas, May 2004;
Vahid R. Yazdanpanah, PhD Microelectronics-Photonics, University of Arkansas, August 2003.

Undergraduate Student Supervision (Summer):
Neil Strom, Physics, Cornell University, 2006 Physics REU, University of Arkansas;
Hugh Churchill, Physics/Math, Oberlin College, 2003 MicroEP REU, University of Arkansas.

List of Publicatoins:
  1. Spatially localized formation of InAs quantum dots on shallow patterns regardless of crystallographic directions
    Jihoon Lee, Zhiming Wang, William Black, Vasyl. P. Kunets, Yuriy Mazur, and Gregory J. Salamo
    Advanced Functional Materials 17, 3187 (2007)
  2. Two-dimensional ordering of (In,Ga)As quantum dots in vertical multilayers grown on GaAs(100) and (n11)
    P. M. Lytvyn, V. V. Strelchuk, O. F. Kolomys, I. V. Prokopenko, M. Ya. Valakh, Yu. I. Mazur, Zh. M. Wang, G. J. Salamo, and M. Hanke
    Applied Physics Letters 91, 173118 (2007)
  3. Initial stages of chain formation in a single layer of (In,Ga)As quantum dots grown on GaAs (100)
    M. Schmidbauer, Zh. M. Wang, Yu. I. Mazur, P. M. Lytvyn, G. J. Salamo, D. Grigoriev, P. Schäfer, R. Köhler, and M. Hanke
    Applied Physics Letters 91, 093110 (2007)
    Featured on the Journal Cover of Volume 91, Issue 9
  4. Tuning the optical performance of surface quantum dots in InGaAs/GaAs hybrid structures
    B. L. Liang, Zh. M. Wang, Yu. I. Mazur, Sh. Seydmohamadi, M. E. Ware, and G. J. Salamo
    Optics Express 15, 8157-8162 (2007)
  5. Structural anisotropy of InGaAs/GaAs(001) quantum dot chains structures
    V. P. Kladko, M. V. Slobodian, V. V. Strelchuk, O. M. Yefanov, V. F. Machulin, Yu. I. Mazur, Zh. M. Wang, G. J. Salamo
    Physica Status Solidi (a) 204, 2567 - 2571 (2007)
  6. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)
    Zh. M. Wang, B. L. Liang, K. A. Sablon, and G. J. Salamo
    Applied Physics Letters 90, 113120 (2007)
  7. Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates
    N. W. Strom, Zh. M. Wang, J. H. Lee, Z. Y. AbuWaar, Yu. I. Mazur, and G. J. Salamo
    Nanoscale Research Letters 2, 112 (2007)
  8. Observation of change in critical thickness of In droplet formation on GaAs(100)
    J. H. Lee, Zh. M. Wang, and G. J. Salamo
    J. Phys.: Condens. Matter 19, 176223 (2007)
  9. Open-to-Air Synthesis of Monodisperse CdSe NCs via Microfluidic Reaction and Its Kinetics
    Weiling Luan, Hongwei Yang, Shan-tung Tu, Zhiming Wang
    Nanotechnology 18, 175603 (2007)
  10. Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots
    Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, and G. J. Salamo
    Journal of Applied Physics 101, 014301 (2007)
  11. Strain-induced electronic energy changes in multilayered InGaAs/GaAs quantum wire structures
    Zhixun Ma, Todd Holden, Zhiming M. Wang, Gregory J. Salamo, Lyudmila Malikova, and Samuel S. Mao
    J. Appl. Phys. 101, 044305 (2007)
  12. Multiple vertically stacked quantum dot clusters with improved size homogeneity
    J. H. Lee, Zh. M. Wang, B. L. Liang, K. A. Sablon, N. W. Strom, and G. J. Salamo
    Journal of Physics D: Applied Physics 40, 198 (2007)
  13. Optical behavior of GaAs/AlGaAs ringlike nanostructures
    Ziad Y. AbuWaar, Yuriy I. Mazur, Jihoon H. Lee, Zhiming M. Wang, and GGregory J. Salamo
    Journal of Applied Physics 101, 024311 (2007)
  14. Spectroscopy of sub-wetting layer states in InAs/GaAs quantum dot bi-layer systems
    Yu. I. Mazur, Zh. M. Wang, H. Kissel, Z. Ya. Zhuchenko, M. P. Lisitsa, G. G. Tarasov, and G. J. Salamo
    Semicond. Sci. Technol. 22, 86 (2007)
  15. Formation of Self-Assembled Sidewall Nanowires on Shallow Patterned GaAs (100)
    Jihoon Lee, Zhiming Wang, Baolai Liang, William Black, Vasyl. P. Kunets, Yuriy Mazur, and Gregory J. Salamo
    IEEE Transactions of Nanotechnology, 6, 70 (2007)
  16. Self-Organization of InAs Quantum-Dot Clusters Directed by Droplet Homoepitaxy
    Zh. M. Wang, B. L. Liang, K. A. Sablon, J. H. Lee, Yu. I. Mazur, N. W. Strom, and G. J. Salamo
    Small 3, 235 (2007)
  17. Lateral Ordering of Quantum Dots and Wires in the (In,Ga)As/GaAs(100) Multilayer Structures
    V. V. Strel'chuk, P. M. Lytvyn, A. F. Kolomys, M. Ya. Valakh, Yu. I. Mazur, Zh. M. Wang, and G. J. Salamo
    Semiconductors 41, 73 (2007)
  18. Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots
    B. L. Liang, Zh. M. Wang, Yu. I. Mazur, and G. J. Salamo
    Applied Physics Letters, 89, 243124 (2006)
  19. Survival of atomic monolayer steps during oxide desorption on GaAs(100)
    J. H. Lee, Zh. M. Wang, and G. J. Salamo
    Journal of Applied Physics 100, 114330 (2006)
  20. Annealing effect on GaAs droplet templates in formation of self-assembled InAs quantum dots
    B. L. Liang, Zh. M. Wang, J. H. Lee, K. A. Sablon, Yu. I. Mazur, and G. J. Salamo
    Applied Physics Letters 89, 213103 (2006)
  21. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates
    J. H. Lee, Zh. M. Wang, N. W. Strom, Yu. I. Mazur, and G. J. Salamo
    Applied Physics Letters 89, 202101 (2006)
    Featured on the Journal Cover of Volume 89, Issue 20
  22. Excitonic transfer in coupled InGaAs/GaAs quantum well to InAs quantum dots
    Yu. I. Mazur, B. L. Liang, Zh. M. Wang, D. Guzun, G. J. Salamo, Z. Ya. Zhchendo, and G. G. Tarasov
    Applied Physics Letters 89, 151914 (2006)
  23. Structural evolution in strained In0.18Ga0.82As stacking multilayers on vicinal GaAs surfaces
    V Yazdanpanah, Zh M Wang, J H Lee and G J Salamo
    New J. Phys. 8 233 (2006)
  24. Size and density control of InAs quantum dot ensembles on self-assembled nanostructured templates
    J H Lee, Zh M Wang, B L Liang, K A Sablon, N W Strom, and G J Salamo
    Semicond. Sci. Technol. 21, 1547–1551 (2006)
  25. Time-resolved photoluminescence spectroscopy of subwetting layer states in InGaAs/GaAs quantum dot structures
    Yu. I. Mazur, B. L. Liang, Zh. M. Wang, D. Guzun, G. J. Salamo, G. G. Tarasov, and Z. Ya. Zhuchenko
    Journal of Applied Physics 100, 054316 (2006)
  26. Lengthening of the photoluminescence decay time of InAs quantum dots coupled to InGaAs/GaAs quantum well
    Yu. I. Mazur, B. L. Liang, Zh. M. Wang, G. G. Tarasov, D. Guzun, G. J. Salamo, T. D. Mishima, and M. B. Johnson
    Journal of Applied Physics 100, 054313 (2006)
  27. Direct Spectroscopic Evidence for the Formation of One-Dimensional Wetting Wires During the Growth of InGaAs/GaAs Quantum Dot Chains
    Xiaoyong Wang, Zhiming M. Wang, Baolai Liang, Gregory J. Salamo, and Chih-Kang Shih
    Nano Letters 6, 1847 (2006)
  28. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy
    Zhiming M. Wang, Kyland Holmes, Yuriy I. Mazur, Kimberly A. Ramsey, and Gregory J. Salamo
    Nanoscale Research Letters 1, 57 (2006)
  29. Zero-strain GaAs quantum dot molecules as investigated by x-ray diffuse scattering
    M. Hanks, M. Schmidbauer, D. Grigoriev, P. Schafer, R. Kohler, T. H. Metzger, Zh. M. Wang, Yu. I. Mazur, and G. J. Salamo
    Applied Physics Letters 89, 053116 (2006)
  30. Growth and characterization of bilayer InAs/GaAs quantum dot structures
    B. L. Liang, Zh. M. Wang, Yu. I. Mazur, V. V. Strelchuck, and G. J. Salam
    Phys. Stat. Sol. (a) 203, 2403 (2006)
  31. Low density InAs quantum dots grown on GaAs nanoholes
    B. L. Liang, Zh. M. Wang, J. H. Lee, K. Sablon, Yu. I. Mazur, and G. J. Salamo
    Applied Physics Letters 89, 043113 (2006)
  32. Correlation between surface and buried InAs quantum dots
    B. L. Liang, Zh. M. Wang, Yu. I. Mazur, G. J. Salamo, Eric A. DeCuir, Jr., and M. O. Manasreh
    Applied Physics Letters 88, 043125 (2006)
  33. Observation of Ga droplet formation on (311)A and (511)A GaAs surfaces
    Ziad Y. AbuWaar, Zhiming M. Wang, Jihoon H. Lee, and Gregory J. Salamo
    Nanotechnology 17, 4037 (2006)
  34. Evolution between self-assembled single and double ring-like nanostructures
    J. H. Lee, Zh. M. Wang, Z. Y. Abuwaar, N. W. Strom, and G. J. Salamo
    Nanotechnology 17, 3972 (2006)
  35. Ga-triggered oxide desorption from GaAs(100) and non-(100) substrates
    J. H. Lee, Zh. M. Wang, and G. J. Salamo
    Applied Physics Letters 88, 252108 (2006)
  36. Localized formation of InAs quantum dots on shallow-patterned GaAs(100)
    Zh. M. Wang, J. H. Lee, B. L. Liang, W. T. Black, Vas. P. Kunets, Yu. I. Mazur, and G. J. Salamo
    Applied Physics Letters 88, 233102 (2006)
    Featured on the Journal Cover of Volume 88, Issue 23
  37. InGaAs quantum dots grown on B-type high index GaAs substrates: surface morphologies and optical properties
    B L Liang, Zh M Wang, Yu I Mazur, V V Strelchuck, K Holmes, J H Lee and G J Salamo
    Nanotechnology 17, 2736 (2006)
  38. Selective growth of InGaAs/GaAs quantum dot chains on pre-patterned GaAs(100)
    J. H. Lee, Zh. M. Wang, B. L. Liang, W. T. Black, Vas. P. Kunets, Yu. I. Mazur, and G. J. Salamo
    Nanotechnology 17, 2275 (2006)
  39. One-dimensional postwetting layer in InGaAs/GaAs(100) quantum-dot chains
    Zh. M. Wang, Yu. I. Mazur, J. L. Shultz, G. J. Salamo, and T. D. Mishima, and M. B. Johnson
    Journal of Applied Physics 99, 033705 (2006)
  40. Controlling Planar and Vertical Ordering in Three-Dimensional (In,Ga)As Quantum Dot Lattices by GaAs Surface Orientation
    M. Schmidbauer, Sh. Seydmohamadi, D. Grigoriev, Zh. M. Wang, Yu. I. Mazur, P. Schafer, M. Hanke, R. Kohler, and G. J. Salamo
    Physics Review Letters 96, 066108 (2006)
  41. Investigation of indium distribution in InGaAs/GaAs quantum dot stacks using high-resolution x-ray diffraction and Raman scattering
    Yu. I. Mazur, Zh. M. Wang, G. J. Salamo, V. V. Strelchuk, V. P. Kladko, V. F. Machulin, M. Ya. Valakh, and M. O. Manasreh
    Journal of Applied Physics 99, 023517 (2006)
  42. Fields of deformation anisotropy exploration in multilayered (In,Ga)As/GaAs structures by high-resolution X-ray scattering
    O. Yefanov, V. Kladko, O. Gudymenko, V. Strelchuk, Yu. Mazur, Zh. Wang, and G. Salamo
    Phys. Stat. Sol. (a) 203, 154 (2006)
  43. Optical Detection of Asymmetric Quantum-Dot Molecules in Double-Layer InAs/GaAs Structures
    G. G. Tarasov, Z. Ya. Zhuchenko, M. P. Lisitsa, Yu. I. Mazur, Zh. M. Wang, G. J. Salamo, T. Warming, D. Bimberg, and H. Kissel
    Semiconductors 40, 79 (2006)
  44. Photoluminescence linewidths from multiple layers of laterally self-ordered InGaAs quantum dots
    Zh. M. Wang, Y. I. Mazur, Sh. Seydmohamadi, G. J. Salamo, and H. Kissel
    Applied Physics Letters 87, 213105 (2005)
  45. Microsize defects in InGaAs/GaAs (N11)A/B multilayers quantum dot stacks
    P.M. Lytvyn, I.V. Prokopenko, V.V. Strelchuk, Yu.I. Mazur, Zh.M. Wang, G.J. Salamo
    Journal of Crystal Growth 284, 47 (2005)
  46. Photoluminescence studies of self-assembled InAs quantum dots formed on InGaAs/GaAs quantum well
    X. Mu, Y. J. Ding, Z. Wang, and G. J. Salamo
    Laser Physics Letters 2, 538 (2005)
  47. Strong optical nonlinearity in strain-induced laterally ordered In0.4Ga0.6As quantum wires on GaAs (311)A substrate
    Yu. I. Mazur, Zh. M. Wang, G. G. Tarasov, H. Wen, V. Strelchuk, D. Guzun, M. Xiao, G. J. Salamo, T. D. Mishima, Guoda D. Lian, and M. B. Johnson
    Journal of Applied Physics 95, 053711 (2005)
  48. Tailoring of high-temperature photoluminescence in InAs/GaAs bilayer quantum dot structures
    Yu. I. Mazur, Zh. M. Wang, G. G. Tarasov, Vas. P. Kunets, G. J. Salamo, Z. Ya. Zhuchenko, and H. Kissel
    Journal of Applied Physics 95, 053515 (2005)
  49. Control on self-organization of InGaAs/GaAs(100) quantum-dot chains
    Zh. M. Wang, Yu. I. Mazur, K. Homles, G. J. Salamo
    Journal of Vacuum Science and Technology B 23, 1732 (2005)
  50. Morphological instability of GaAs (7 1 1)A: A transition between (1 0 0) and (5 1 1) terraces
    V.R. Yazdanpanah, Zh.M. Wang, and G.J. Salamo
    Journal of Crystal Growth 280, 2 (2005)
  51. Three-dimensional self-ordering in an InGaAs/GaAs multilayered quantum dot structure investigated by x-ray diffuse scattering
    D. Grigoriev, M. Schmidbauer, P. Schafer, S. Besedin, Yu. I. Mazur, Zh. M. Wang, G. J. Salamo, and R. Kohler
    J. Phys. D: Appl. Phys. 38, A154-A159 (2005)
  52. Self-assembly of GaAs holed nanostructures by droplet epitaxy
    Zhiming M. Wang, Kyland Holmes, John L. Shultz, and Gregory J. Salamo
    Phys. Stat. Sol. (a) 202, R85-R87 (2005)
    Featured on the Journal Cover of Volume 202, Issue 8
  53. Surface dynamics during molecular-beam epitaxy of (In,Ga)As on GaAs(331)B: Formation of quantum wires with low In content
    Zh. M. Wang, Sh. Seydmohamadi, V. R. Yazdanpanah, and G. J. Salamo
    Physics Review B 71, 165315 (2005)
  54. RHEED study of GaAs(3 3 1)B surface
    V.R. Yazdanpanah, Zh.M. Wang, Sh. Seydmohamadi, and G.J. Salamo
    Journal of Crystal Growth 277, 72 (2005)
  55. Orientation dependence behavior of self-assembled (In,Ga)As quantum structures on GaAs surface
    Sh. Seydmohamadi, Zh. M. Wang, G. J. Salamo
    Journal of Crystal Growth 275, 410 (2005)
  56. Selective etching of InGaAs/GaAs(100) multilayers of quantum-dot chains
    Zh. M. Wang, L. Zhang, K. Holmes, and G. J. Salamo
    Applied Physics Letters 86, 143106 (2005)
  57. Evidence of Strong Phonon-Assisted Resonant Intervalley Up-Transfer for Electrons in Type-II GaAs–AlAs Superlattices
    Xiaodong Mu, Yujie J. Ding, Zhiming Wang, and Gregory J. Salamo
    IEEE J. Quantum Electronics 41, 337 (2005)
  58. Evolution Of Elongated (In,Ga)As/GaAs(100) Island with Low Indium Content
    S. O. Cho, Zh. M. Wang, and G. J. Salamo
    Applied Physics Letters 86, 113106 (2005)
  59. Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures
    Yu. I. Mazur, Zh. M. Wang, G. G. Tarasov, M. Xiao, G. J. Salamo, J. W. Tomm, V. Talalaev, and H. Kissel
    Applied Physics Letters 86, 63102 (2005)
  60. Resonant Raman Scattering and Atomic Force Microscopy of InGaAs/GaAs Multilayer Nanostructures with Quantum Dots
    M.Ya. Valakh, V.V. Strelchuk, A.F. Kolomys, Yu.I. Mazur, Z.M. Wang, M. Xiao, and G.J. Salamo
    Semiconductors 39, 127-131 (2005)
  61. High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures
    Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo
    Journal of Applied Physics 96, 6908 (2004)
  62. Growth and characterization of InAs epitaxial layers on GaAs(111)B
    H. Wen, Zh. M. Wang, J. L. Shultz, B. L. Liang, and G. J. Salamo
    Physics Review B 70, 205307 (2004)
  63. Self assembled (In,Ga)As quantum structures on GaAs(411)A
    Sh. Seydmohamadi, Zh. M. Wang, G. J. Salamo
    Journal of Crystal Growth 269, 257 (2004)
  64. Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes
    Zh. M. Wang, Sh. Seydmohamadi, J. H. Lee, and G. J. Salamo
    Applied Physics Letters 85, 5031 (2004)
  65. Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy
    D. G. Cooke, F. A. Hegmann, Yu. I. Mazur, W. Q. Ma, X. Wang, Z. M. Wang, G. J. Salamo, M. Xiao, T. D. Mishima, and M. B. Johnson
    Applied Physics Letters 85, 3839 (2004)
  66. Tuning In0.3Ga0.7As/GaAs multiple quantum dots for long-wavelength infrared detectors
    Y. C. Chua, E. A. Decuir, B. S. Passmore, K. H. Sharif, M. O. Manasreh, Z. M. Wang, G. J. Salamo
    Applied Physics Letters 85, 1003 (2004)
  67. Transmission Electron Microscopy of Multi-Layer InGaAs Quantum Wires Grown on GaAs (311)A
    G. D. Lian, M. B. Johnson, H. Wen, Z. M. Wang, G. Salamo, D. A. Blom, L. F. Allard
    Microsc. Microanal. 10(suppl 2), 530 (2004)
  68. Persistence of (In,Ga)As quantum-dot chains under index deviation from GaAs(100)
    Z.M.Wang, Yu. I. Mazur, G.J.Salamo, P. M. Lytvin, V. V. Strelchuk, and M. Ya. Valakh
    Applied Physics Letters 84, 4681 (2004)
  69. Fabrication of (In,Ga)As quantum-dot chains on GaAs(100)
    Z.M.Wang, K. Holmes, Yu. I. Mazur, and G.J.Salamo
    Applied Physics Letters 84, 1931 (2004)
    "A string of dots", Editors' Choice: Highlight of the Recent Literature
    Science 303, 1947 (2004)
  70. Atom-resolved scanning tunneling microscopy of (In,Ga)As quatnum wires on GaAs(311)A
    H.Wen, Z.M.Wang, and G.J.Salamo
    Applied Physics Letters 84, 1756 (2004)
  71. Polarization spectroscopy of InGaAs/GaAs quantum wires grown on (331)B GaAs template with nanoscale fluctuations
    X.Y.Wang, Z.M.Wang, V.R.Yazdanpanah, G.J.Salamo, and M.Xiao
    Journal of Applied Physics 95, 1609 (2004)
  72. Hidden resonant excitation of photoluminescence in bilayer arrays of InAs/GaAs quantum dots
    Yu.I.Mazur, Z.M.Wang, G.J.Salamo, M.Xiao, G.G.Tarasov, Z.Ya.Zhuchenko, W.T.Masselink, and H.Kissel
    Applied Physics Letters 83, 1866 (2003)
  73. Morphology evolution during strained (In,Ga)As epitaxial growth on GaAs vicinal (100) surfaces
    Z.M.Wang, J.L.Shultz, and G.J.Salamo
    Applied Physics Letters 83, 1749 (2003)
  74. Surface dynamics during phase transitions of GaAs(100)
    Z. M. Wang and G. J. Salamo
    Physics Review B 67, 125324 (2003)
  75. InGaAs/GaAs three-dimensionally-ordered array of quantum dots
    Yu.I.Mazur, W.Q.Ma, X.Wang, Z.M.Wang, G.J.Salamo, M.Xiao, T.D.Mishima, and M.Johnson
    Applied Physics Letters 83, 987 (2003)
  76. Highly anisotropic morphologies of GaAs(331) surfaces
    V. R. Yazdanpanah, Z. M. Wang, and G. J. Salamo
    Applied Physics Letters 82, 1766 (2003)
  77. Strain-driven facet formation on self-assembled InAs islands on GaAs (311)A
    Z. M. Wang, H. Wen, V. R. Yazdanpanah, J. L. Shultz, and G. J. Salamo
    Applied Physics Letters 82, 1688 (2003)
  78. Piezoelectric effect in elongated (In,Ga)As islands on GaAs(100)
    Wenquan Ma, Xiaoyong Wang, Zhiming Wang, Mohammad L. Hussein, John Shultz, Min Xiao, and Gregory J. Salamo
    Physics Review B 67, 35315 (2003)
  79. Origin of the step formation on the GaAs(311)
    Z.M.Wang, V.R.Yazdanpanah, C.L.Workman, W.Q.Ma, J.L.Shultz, and G.J.Salamo
    Physics Review B 66, 193313 (2002)
  80. GaAs(311) templates for Molecular Beam Epitaxy growth: surface morphologies and reconstruction
    Z.M.Wang, V.R.Yazdanpanah, J.L.Shultz, and G.J.Salamo
    Applied Physics Letters 81, 2965 (2002)
  81. Photoluminescence study of carrier transfer among vertically-aligned double-stacked InAs/GaAs quantum dot layers
    Yu.I.Mazur, X.Wang, Z.M.Wang, G.J.Salamo, M.Xiao, and H.Kissel
    Applied Physics Letters 81, 2469 (2002)
  82. Molecular-beam epitaxial growth and surface characterization of GaAs(311)B
    Z.M.Wang, L.Daweritz, and K.H.Ploog
    Applied Physics Letters 78, 712 (2001)
  83. MBE growth, structure and magnetic properties of MnAs on GaAs on a microscopic scale
    L.Daweritz, F.Schippan, A.Trampert, M.Kastner, G.Behme, Z.M.Wang, M.Moreno, P.Schutzendube, and K. H. Ploog
    Journal of Crystal Growth 227/228, 834 (2001)
  84. Controllable step bunching induced by Si deposition on the vicinal GaAs(001) surface
    Z.M.Wang, L.Daweritz, P.Schutzendube, and K.H.Ploog
    Surface Science 459, L482 (2000)
  85. Evolution of Si-on-GaAs (001) surface morphology towards self-organized ordered Si structures
    Z.M.Wang, L.Daweritz, P.Schutzendube, and K.H.Ploog
    Journal of Vacuum Science and Technology B 18, 2204 (2000)
  86. In-situ control during molecular beam epitaxy: Impurity incorporation and dissimilar materials epitaxial growth
    L.Daweritz, Z.M.Wang, F.Schippan, A.Trampert, and K.H.Ploog
    Materials Science and Engineering B 75, 157 (2000)
  87. Silicon-induced nanostructure evolution of the GaAs (001) surface
    Z.M.Wang, L.Daweritz, P.Schutzendube, and K.H.Ploog
    Physics Review B 61, R2440 (2000)
  88. Temperature dependence of photoluminescence of n-i-p-i GaAs superlattices
    J.Z.Wang, Z.G.Wang, Z.M.Wang, S.L.Feng, and Z.Yang
    Physics Review B 62, 6956 (2000)
  89. Photoluminescence of InAs quantum dots in n-i-p-i GaAs superlattices
    J. Z.Wang, Z.M.Wang, Z.G.Wang, Y.H.Chen, and Z.Yang
    Physics Review B 61, 15614 (2000)
  90. Optical properties of InAs self-organized quantum dots in n-i-p-i GaAs superlattices
    J.Z.Wang, Z.M.Wang, Z.G.Wang, Z.Yang, and S.L.Feng
    Applied Physics Letters 76, 2035 (2000)
  91. Methods to tune the electronic states of self-organized InAs/GaAs quantum dots
    Hui Wang, ZhiChuan Niu, Haijun Zhu, Zhiming Wang, Desheng Jiang, and Songlin Feng
    Physica B: Condensed Matter 279, 217 (2000)
  92. Si doping effect on self-organized InAs/GaAs quantum dots
    Zhao Qian, Feng Songlin, Ning Dong, Zhu Haijun, Wang Zhiming, and Deng Yuanming
    Journal of Crystal Growth 200, 603 (1999)
  93. Uniformity enhancement of the self-organized InAs quantum dots
    Haijun Zhu, Zhiming Wang, Hui Wang, Liqiu Cui and Songlin Feng
    Journal of Crystal Growth 197, 372 (1999)
  94. Evidence of multimodal patterns of self-organized quantum dots
    F. Chen, S. L. Feng, Q. Zhao, Z. M. Wang, X. Z. Yang and L. S. Wen
    Superlattices and Microstructures 24, 353 (1998)
  95. Effects of growth interruption on self-assembled InAs/GaAs islands
    Z.M.Wang, S.L.Feng, X.P.Yang, Z.D.Lu, and Z.Y.Xu, H.Z.Zheng, F.L.Wang, P.D.Han, and X.F.Duan
    Journal of Crystal Growth 192, 97 (1998)
  96. Annealing Behavior of InAs/GaAs Quantum Dot Structures
    Z.M. Wang, S.L. Feng, Z.D. Lu, Q. Zhao, X.P. Yang, Z.G. Chen, Z.Y. Xu, and H.Z. Zheng
    Journal of Electronic Materials 27, 59 (1998)
  97. Experimental study on the Er/p-InP Schottky barrier
    W.X.Chen, M.H.Yuan, K.Wu, Y.X.Zhang, Z.M.Wang, and G.G.Qin
    Journal of Applied Physics 78, 584 (1995)
  98. Effects of hydrogen on Er/p-type Si Schottky-barrier diodes
    Z. M. Wang, Y. X. Zhang, K. Wu, M. H. Yuan, W. X. Chen, and G. G. Qin
    Physics Review B 51, 7878 (1995)